Research Papers Library

Ranking with Query-Dependent Loss for Web Search

Queries describe the users’ search intent and therefore they play an essential role in the context of ranking for information retrieval and Web search. However, most of existing approaches for ranking do not explicitly take into consideration the fact that queries vary significantly along several dimensions and entail different treatments regarding the ranking models. In this paper, we propose to incorporate query difference into ranking by introducing querydependent loss functions. In the context of Web search, query difference is usually represented as different query categories; and, queries are usually classified according to search intent such as navigational, informational and transactional queries. Based on the observation that such kind of query categorization has high correlation with the user’s different expectation on the result accuracy on different rank positions, we develop position-sensitive query-dependent loss functions exploring such kind of query categorization. Beyond the simple learning method that builds ranking functions with pre-defined query categorization, we further propose a new method that learns both ranking functions and query categorization simultaneously. We apply the querydependent loss functions to two particular ranking algorithms, RankNet and ListMLE. Experimental results demonstrate that query-dependent loss functions can be exploited to significantly improve the accuracy of learned ranking functions. We also show that the ranking function jointly learned with query categorization can achieve better performance than that learned with pre-defined query categorization. Finally, we provide analysis and conduct additional experiments to gain deeper understanding on the advantages of ranking with query-dependent loss functions over other querydependent ranking approaches and query-independent approaches.

Download PDF


World's leading professional association of Internet Research Specialists - We deliver Knowledge, Education, Training, and Certification in the field of Professional Online Research. The AOFIRS is considered a major contributor in improving Web Search Skills and recognizes Online Research work as a full-time occupation for those that use the Internet as their primary source of information.

Get Exclusive Research Tips in Your Inbox

Receive Great tips via email, enter your email to Subscribe.