fbpx

Research Papers Library

Classifying illegal activities on tor network based on web textual contents

 

The freedom of the Deep Web offers a safe place where people can express themselves anonymously but they also can conduct illegal activities. In this paper, we present and make publicly available1 a new dataset for Darknet active domains, which we call it ”Darknet Usage Text Addresses” (DUTA). We built DUTA by sampling the Tor network during two months and manually labeled each address into 26 classes. Using DUTA, we conducted a comparison between two well-known text representation techniques crossed by three different supervised classifiers to categorize the Tor hidden services. We also fixed the pipeline elements and identified the aspects that have a critical influence on the classification results. We found that the combination of TF-IDF words representation with Logistic Regression classifier achieves 96.6% of 10 folds cross-validation accuracy and a macro F1 score of 93.7% when classifying a subset of illegal activities from DUTA. The good performance of the classifier might support potential tools to help the authorities in the detection of these activities.

Download PDF

 

AOFIRS

World's leading professional association of Internet Research Specialists - We deliver Knowledge, Education, Training, and Certification in the field of Professional Online Research. The AOFIRS is considered a major contributor in improving Web Search Skills and recognizes Online Research work as a full-time occupation for those that use the Internet as their primary source of information.

Get Exclusive Research Tips in Your Inbox

Receive Great tips via email, enter your email to Subscribe.